逻辑学

杨睿之

复旦大学哲学学院

2025 年秋季

前情提要

- 基本符号: 变元、常元、词项、谓词、量词、命题连接 池和括号
- 合式公式: 原子公式、合式公式的递归定义
- 量词的辖域、变元的约束出现和自由出现、语句
- 代入与变元易字

定义(代入)

我们定义对字符串的 代入 (substitution) 操作。首先考虑词项:

- $\mathbf{c}_t^c = t$
- 若 $t_1 \neq c$,则 $c_{t_2}^{t_1} = c$
- $\mathbf{x}_t^x = t$
- 若 $t_1 \neq x$, $x_{t_0}^{t_1} = x$

接下来,我们定义对公式的代入。直观上,我们希望 φ_t^x 表示把 φ 中所有 x 的自由出现替换为词项 t。下面给出严格的递归定义 定义 (代入)

■ 对原子公式,
$$(Pt_1 \ldots t_n)_t^x = P(t_1)_t^x \ldots (t_n)_t^x$$

■
$$(\varphi * \psi)_t^x = (\varphi_t^x * \psi_t^x)$$
 (* 可以是 \to , \land , \lor , \leftrightarrow)

例

- $(Rxx)_c^x = Rcc$
- $(Rxc)_{r}^{c} = Rxx$
- $(\forall v_1 R v_0 v_1)_{v_2}^{v_0} = \forall v_1 R v_2 v_1$

除非在定义中特别强调,一般元语言中出现的 x,y,z 指代不同的变元

- 直观上, ∀xPx 与 ∀yPy 的意思是一样的
- 考虑 $(\forall yRxy)_y^x = \forall yRyy$,它与 $(\forall yRxy)_z^x = \forall yRzy$ 的意思有明显的不同。造成这种不同的原因似乎是变元选得不巧
- ∀yRxy 与 ∀zRxz 意思相同,但(∀zRxz)* 就没问题

- 直观上, $\forall xPx$ 与 $\forall yPy$ 的意思是一样的
- 考虑 (∀yRxy)^x_y = ∀yRyy, 它与 (∀yRxy)^x_z = ∀yRzy 的意思 有明显的不同。造成这种不同的原因似乎是变元选得 不巧
- ∀yRxy 与 ∀zRxz 意思相同,但(∀zRxz);就没问题

- 直观上, $\forall xPx$ 与 $\forall yPy$ 的意思是一样的
- 考虑 (∀yRxy)^x_y = ∀yRyy, 它与 (∀yRxy)^x_z = ∀yRzy 的意思 有明显的不同。造成这种不同的原因似乎是变元选得 不巧
- ∀yRxy 与 ∀zRxz 意思相同,但(∀zRxz)x 就没问题

定义 (变元易字)

假设 z 不在公式 φ 中出现,我们称 $\forall z \varphi_z^x$ 是 $\forall x \varphi$ 的一个 (约束) 变元易字 (alphabetic variant)。 3 类似。 如果 φ' 是 φ 通过若干次子公式的变元易字得到的,我们也 称 φ' 是 φ 的 变元易字

- ∀zRxz 是 ∀yRxy 的变元易字
- $\forall x(Px \to \exists xRxx)$ 有变元易字 $\forall y(Py \to \exists xRxx)$ 或 $\forall x(Px \to \exists yRyy)$
- $\forall y(Py \rightarrow \exists yRyy)$ 是 $\forall x(Px \rightarrow \exists yRxy)$ 的变元易字吗?

- ∀zRxz 是 ∀yRxy 的变元易字
- $\forall x(Px \to \exists xRxx)$ 有变元易字 $\forall y(Py \to \exists xRxx)$ 或 $\forall x(Px \to \exists yRyy)$
- $\forall y(Py \rightarrow \exists yRyy)$ 是 $\forall x(Px \rightarrow \exists yRxy)$ 的变元易字吗?

- ∀zRxz 是 ∀yRxy 的变元易字
- $\forall x(Px \to \exists xRxx)$ 有变元易字 $\forall y(Py \to \exists xRxx)$ 或 $\forall x(Px \to \exists yRyy)$
- $\forall y(Py \rightarrow \exists yRyy)$ 是 $\forall x(Px \rightarrow \exists yRxy)$ 的变元易字吗?

- 我们生活、学习、工作中确实遇到一类现象,它们似乎不是物理的,甚至是超物理的,它们不只是社会的,至少是跨社会的。一旦我们开始思考、交流、计算,它就一定出现。
- 我们希望刻画这种现象。总结一些规律。从而再次遇到这种现象时,我们能更好地驾驭它。

- 我们生活、学习、工作中确实遇到一类现象,它们似乎不是物理的,甚至是超物理的,它们不只是社会的,至少是跨社会的。一旦我们开始思考、交流、计算,它就一定出现。
- 我们希望刻画这种现象。总结一些规律。从而再次遇到这种现象时,我们能更好地驾驭它。

- 这些被称作逻辑的现象往往以 推理 的形态出现。
- 我们关于什么推理是 **有效的** 往往有共同的直观,这暗示着背后确有某种规律。
- 或是由于我们自身的失误,或是由于自然语言的遮蔽, 我们会犯错。因此,我们需要总结一套清晰、明确易 干套用的规律

- 这些被称作逻辑的现象往往以 推理 的形态出现。
- 我们关于什么推理是 <mark>有效的</mark> 往往有共同的直观,这暗 示着背后确有某种规律。
- 或是由于我们自身的失误,或是由于自然语言的遮蔽, 我们会犯错。因此,我们需要总结一套清晰、明确易 干套用的规律

- 这些被称作逻辑的现象往往以推理的形态出现。
- 我们关于什么推理是 <mark>有效的</mark> 往往有共同的直观,这暗 示着背后确有某种规律。
- 或是由于我们自身的失误,或是由于自然语言的遮蔽, 我们会犯错。因此,我们需要总结一套清晰、明确易 干套用的规律

- 这套规律是关于如何判断推理的有效性的。所谓有效的推理,即在任何情况下,如果前提为真,那么结论为真。而与有效性相关的只是推理的形式。
- 无论是为了拨开自然语言的遮蔽还是突出推理的形式, 都在召唤一种人工语言(或形式语言)
- 我们上节课介绍了这样一种语言的语法

- 这套规律是关于如何判断推理的有效性的。所谓有效的推理,即在任何情况下,如果前提为真,那么结论为真。而与有效性相关的只是推理的形式。
- 无论是为了拨开自然语言的遮蔽还是突出推理的形式, 都在召唤一种人工语言(或形式语言)
- 我们上节课介绍了这样一种语言的语法

- 这套规律是关于如何判断推理的有效性的。所谓有效的推理,即在任何情况下,如果前提为真,那么结论为真。而与有效性相关的只是推理的形式。
- 无论是为了拨开自然语言的遮蔽还是突出推理的形式, 都在召唤一种人工语言(或形式语言)
- 我们上节课介绍了这样一种语言的语法

我们已经有了一个完整的语言的躯壳,我们甚至可以用它 来书写推理了

$$\forall x(S x \to Mx)$$

$$\forall x(Mx \to Px)$$

$$Sc \to Pc$$

我们已经有了一个完整的语言的躯壳,我们甚至可以用它 来书写推理了

例

 $\exists x \forall y Rxy$ $\forall y \exists x Rxy$

我们仍然需要一套标准来判断一个推理是否有效

我们已经有了一个完整的语言的躯壳,我们甚至可以用它来书写推理了

例

 $\exists x \forall y Rxy$

 $\forall y \exists x R x y$

我们仍然需要一套标准来判断一个推理是否有效

- 一般地, 我们如何判断一个推理的有效性?
- 类似命题逻辑,我们需要定义什么是谓词逻辑语言能够谈论的"情况"
- 我们需要赋予谓词逻辑语言以 语义 (semantics)
- 一个隐藏任务:我们希望让大家相信,谓词逻辑是 "通用文字"

- 一般地, 我们如何判断一个推理的有效性?
- 类似命题逻辑,我们需要定义什么是谓词逻辑语言能够谈论的"情况"
- 我们需要赋予谓词逻辑语言以 语义 (semantics)
- 一个隐藏任务:我们希望让大家相信,谓词逻辑是 "通用文字"

- 一般地, 我们如何判断一个推理的有效性?
- 类似命题逻辑,我们需要定义什么是谓词逻辑语言能够谈论的"情况"
- 我们需要赋予谓词逻辑语言以 语义 (semantics)
- 一个隐藏任务:我们希望让大家相信,谓词逻辑是 "通用文字"

- 一般地, 我们如何判断一个推理的有效性?
- 类似命题逻辑,我们需要定义什么是谓词逻辑语言能够谈论的"情况"
- 我们需要赋予谓词逻辑语言以 语义 (semantics)
- 一个隐藏任务:我们希望让大家相信,谓词逻辑是 "通用文字"

■ 基于对常元和谓词的选择,我们可以有不同的具体的 谓词逻辑语言 或 谓词逻辑语言的片段

- 一个三段论,可以用只含有 3 个 1 元谓词 的谓词逻辑书写
- 图的语言只含有 1 个2 元谓词
- 实际使用中,我们总是工作于某个具体的谓词逻辑语言中

给定一个具体的谓词逻辑语言,它的 语义 就是对其中符号的一套解释。我们把这套解释称作 结构 (structure) 或 模型 (model)

例

考虑含有一个 1 元谓词符号 P 和一个 2 元谓词符号 R 的语言。它的一个结构或模型要提供必要的信息让我们知道诸如 $\forall x(\exists vRvx \to Px)$ 这样的语句在说什么。

给定一个具体的谓词逻辑语言,它的 语义 就是对其中符号的一套解释。我们把这套解释称作 结构 (structure) 或 模型 (model)

例

考虑含有一个 1 元谓词符号 P 和一个 2 元谓词符号 R 的语言。它的一个结构或模型要提供必要的信息让我们知道诸如 $\forall x(\exists yRyx \rightarrow Px)$ 这样的语句在说什么。

例

 $\forall x(\exists yRyx \rightarrow Px)$ 可以在说"所有被爱的人都是幸福的",也可以表示"平方数都是非负的"。

为了明确它的意思,我们首先需要解释量词 $\forall x$ 和 $\exists x$ 的解释—— 论域 (domain)。论域是一个集合,记作 D。此时,P 应该被解释为 D 的一个子集,而 R 被解释为 D 上的一个(二元)关系

例

 $\forall x(\exists yRyx \rightarrow Px)$ 可以在说"所有被爱的人都是幸福的",也可以表示"平方数都是非负的"。

为了明确它的意思,我们首先需要解释量词 $\forall x$ 和 $\exists x$ 的解释—— 论域 (domain)。论域是一个集合,记作 D。此时,

P 应该被解释为 D 的一个子集,而 R 被解释为 D 上的一个 $(-\frac{1}{2})$ 关系

(ㅁ) (圊) (불) (불) (혈 () 이익(

例

 $\forall x(\exists yRyx \rightarrow Px)$ 可以在说"所有被爱的人都是幸福的",也可以表示"平方数都是非负的"。

为了明确它的意思,我们首先需要解释量词 $\forall x$ 和 $\exists x$ 的解释—— 论域 (domain)。论域是一个集合,记作 D。此时,P 应该被解释为 D 的一个子集,而 R 被解释为 D 上的一个(二元)关系

定义 (模型或结构)

给定具体的谓词逻辑语言 \mathcal{L} ,我们定义 \mathcal{L} 的一个 模型 或 结构 $\mathcal{M} = (D, I)$ 为一个二元组。其中 \mathcal{D} 是一个非空集合,即 \mathcal{M} 的论域。 \mathcal{I} 是一个解释函数,对 \mathcal{L} 中的每个 \mathcal{I} 元谓词 \mathcal{I} $\mathcal{$

约定

给定(具体的谓词逻辑)语言 \mathcal{L} ,令 $\mathcal{M} = (D, I)$ 是 \mathcal{L} 的一个模型。对 \mathcal{L} 中的谓词 P,我们可能会用 P^I 或 P^M 来表示 I(P)。类似地,对常元 c,我们用 c^I 或 c^M 来表示 I(c)。

- 给定含有谓词 P,R 的语言 \mathcal{L} 的模型 $\mathcal{M} = (D,I)$,我们 现在知道语句 $\forall x(\exists yRyx \to Px)$ 是什么意思了。
- 根据命题逻辑的经验,一个公式的涵义可以从它的诸子公式的涵义得到。但 ∃vRvx → Px 的意思是什么?

- 给定含有谓词 P,R 的语言 \mathcal{L} 的模型 $\mathcal{M} = (D,I)$,我们 现在知道语句 $\forall x(\exists yRyx \to Px)$ 是什么意思了。
- 根据命题逻辑的经验,一个公式的涵义可以从它的诸子公式的涵义得到。但 ∃yRyx → Px 的意思是什么?

- 给定含有谓词 P,R 的语言 \mathcal{L} 的模型 $\mathcal{M} = (D,I)$,我们 现在知道语句 $\forall x(\exists yRyx \to Px)$ 是什么意思了。
- 根据命题逻辑的经验,一个公式的涵义可以从它的诸子公式的涵义得到。但∃yRyx → Px 的意思是什么?

定义 (变元赋值)

假设 $\mathcal{V} = \{v_0, v_1, \dots\}$ 是谓词逻辑语言的变元集, $\mathcal{M} = (D, I)$ 是该语言的一个模型。一个 \mathcal{M} 上的 变元赋值 (variable assignment) 是一个把 \mathcal{V} 中变元映射为 \mathcal{D} 中元素的函数 $s: \mathcal{V} \to \mathcal{D}$

例

给定含有谓词 P,R 的语言。考虑模型 M = (D,I),其中 $D = \{$ 张三、李四、王五 $\}$, $P^I = \{$ 张三、李四 $\}$, $R^I = \{(李四, 王五), (王五, 李四)\}$ 。令变元赋值 s 满足 $s(v_0) =$ 张三, $s(v_1) =$ 李四, $s(v_2) =$ 王五。此时,

- $\forall x(\exists yRyx \rightarrow Px)$ 成立吗?
- \diamondsuit $x = v_0$, $\exists yRyx \rightarrow Px$ 呢?

例

给定含有谓词 P,R 的语言。考虑模型 M = (D,I),其中 $D = \{$ 张三、李四、王五 $\}$, $P^I = \{$ 张三、李四 $\}$, $R^I = \{(李四, 王五), (王五, 李四)\}$ 。令变元赋值 s 满足 $s(v_0) =$ 张三, $s(v_1) =$ 李四, $s(v_2) =$ 王五。此时,

- $\forall x(\exists yRyx \rightarrow Px)$ 成立吗?

例

给定含有谓词 P,R 的语言。考虑模型 M = (D,I),其中 $D = \{$ 张三、李四、王五 $\}$, $P^I = \{$ 张三、李四 $\}$, $R^I = \{(李四, 王五), (王五, 李四)\}$ 。令变元赋值 s 满足 $s(v_0) = 王五$, $s(v_1) = 李四$, $s(v_2) = 王五$ 。此时,

- $\forall x(\exists yRyx \rightarrow Px)$ 成立吗?
- \diamondsuit $x = v_0$, $\exists yRyx \rightarrow Px$ 呢?

为了更好地解释诸如 $\forall x(\exists yRyx \to Px)$ 和 $\exists yRyx \to Px$ 在语义上的递归关系,我们需要定义对变元赋值的 局部改动定义 (变元赋值的局部改动)

给定语言和该语言的模型 M = (D, I) 以及一个变元赋值 s。 假设 $x \in V$ 是一个变元且 $d \in D$,我们用 s[x := d] 表示一个变元赋值函数,对任意赋值 $y \in V$

$$s[x := d](y) = \begin{cases} d & \text{若 } y = x, \\ s(y) & \text{若 } y \neq x \end{cases}$$

例

回到之前的例子。假设 $s(v_0) = 张三$, $s(v_1) = 李四$, $s(v_2) = \Xi\Xi$. 那么 $s[v_0 := \Xi\Xi](v_0) = \Xi\Xi$, $s[v_0 := \Xi\Xi](v_1) = 李$ 四, $s[v_0 := \Xi\Xi](v_2) = \Xi\Xi$

给定语言 \mathcal{L} , 给定 \mathcal{L} 的一个模型 M = (D, I), 给定一个变元赋值 $s: \mathcal{V} \to D$, 我们要定义 满足 (satisfaction) 关系

 $\mathcal{M} \models_s \varphi$

读作 "(公式) φ 在 (模型) M 中被 (赋值) s 满足"

首先,为了书写方便,我们统一对词项(变元或常元)的语义解释的记法。

记法

给定语言 \mathcal{L} ,给定 \mathcal{L} 的一个模型 M = (D, I),给定一个变元赋值 $s: \mathcal{V} \to D$,令 t 是词项,定义

$$\begin{bmatrix} t \end{bmatrix}_{s}^{l} = \begin{cases} c^{l} & \text{若 } t \text{ 是常元 } c, \\ s(x) & \text{若 } t \text{ 是变元 } x \end{cases}$$

定义 (塔斯基真定义 (Tarski's defnition of truth)) 给定语言 \mathcal{L} , 给定 \mathcal{L} 的模型 $\mathcal{M} = (D, I)$, 给定变元赋值 $s: \mathcal{V} \to D$,我们对公式的构造递归地定义 $\mathcal{M} \models_s \varphi$

■ 对原子公式 $Pt_1 ...t_n$, $M \models_s Pt_1 ...t_n$, 当且仅当 $([t_1]_s^I, ..., [t_n]_s^I) \in P^I$, 即 D 中元素 $[t_1]_s^I, ..., [t_n]_s^I$ 之间有 P^I 关系

特别地,对等词 = (一个特别的 2 元谓词), $\mathcal{M} \models_s t_1 = t_2$, 当且仅当 $[t_1]_s^I = [t_2]_s^I$

定义 (塔斯基真定义 (Tarski's defnition of truth)) 给定语言 \mathcal{L} , 给定 \mathcal{L} 的模型 $\mathcal{M} = (D, I)$, 给定变元赋值 $s: \mathcal{V} \to D$,我们对公式的构造递归地定义 $\mathcal{M} \models_s \varphi$

▼ 对原子公式 Pt₁...t_n, M ∈_s Pt₁...t_n, 当且仅当 ([t₁]_s^I,...,[t_n]_s^I) ∈ P^I, 即 D 中元素 [t₁]_s^I,...,[t_n]_s^I 之间有 P^I 关系 特别地,对等词 = (一个特别的 2 元谓词),
 M ∈_s t₁ = t₂, 当且仅当 [t₁]_s^I = [t₂]_s^I

定义 (塔斯基真定义 (Tarski's defnition of truth))

- 对公式的布尔组合:
 - M ⊨_s ¬φ, 当且仅当 并非 M ⊨_s φ 或 M ⊭_s φ
 - $\mathcal{M} \models_s \varphi \land \psi$, 当且仅当 $\mathcal{M} \models_s \varphi \blacksquare \mathcal{M} \models_s \psi$
 - M ⊨_s φ ∨ ψ, 当且仅当 M ⊨_s φ 或 M ⊨_s ψ
 - $\mathcal{M} \models_s \varphi \rightarrow \psi$, 当且仅当 $\mathcal{M} \models_s \varphi$ 蕴含 $\mathcal{M} \models_s \psi$

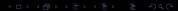
定义 (塔斯基真定义 (Tarski's defnition of truth))

- 对量词:
 - $\mathcal{M} \models_s \forall x \varphi$, 当且仅当对任意 $d \in D$, 都有 $\mathcal{M} \models_{s[x:=d]} \varphi$
 - $\mathcal{M} \models_s \exists x \varphi$, 当且仅当存在 $d \in D$, 使得 $\mathcal{M} \models_{s[x:=d]} \varphi$

这是基于公式 φ 的构造的递归定义,它告诉我们如何一步 步地确定一个公式是否成立

例

- $\mathcal{M} \models_s Px$? $\mathcal{M} \models_{s[x:= \Rightarrow \boxtimes]} Px$? $\mathcal{M} \models_s Ryx$? $\mathcal{M} \models_s Ryx \rightarrow Px$?
 - $M \models_s \exists yRyx \to Px? M \models_s \forall x(\exists yRyx \to Px)?$



这是基于公式 φ 的构造的递归定义,它告诉我们如何一步步地确定一个公式是否成立

例

- $\mathcal{M} \models_s Px$? $\mathcal{M} \models_{s[x:=\underline{\Rightarrow}\underline{m}]} Px$? $\mathcal{M} \models_s Ryx$? $\mathcal{M} \models_s Ryx \to Px$?
 - $M \models_s \exists y R y x \to P x? M \models_s \forall x (\exists y R y x \to P x)?$

这是基于公式 φ 的构造的递归定义,它告诉我们如何一步步地确定一个公式是否成立

例

- $\mathcal{M} \models_s Px$? $\mathcal{M} \models_{s[x:=\underline{\Rightarrow}\underline{m}]} Px$? $\mathcal{M} \models_s Ryx$? $\mathcal{M} \models_s Ryx \rightarrow Px$?
 - $M \models_s \exists y Ryx \to Px? M \models_s \forall x (\exists y Ryx \to Px)?$

这是基于公式 φ 的构造的递归定义,它告诉我们如何一步步地确定一个公式是否成立

例

- $\mathcal{M} \models_s Px$? $\mathcal{M} \models_{s[x:=\underline{\Rightarrow}D]} Px$? $\mathcal{M} \models_s Ryx$? $\mathcal{M} \models_s Ryx \rightarrow Px$?
- $\blacksquare \mathcal{M} \models_s \exists y R y x \to P x? \mathcal{M} \models_s \forall x (\exists y R y x \to P x)?$

这是基于公式 φ 的构造的递归定义,它告诉我们如何一步步地确定一个公式是否成立

例

- $\mathcal{M} \models_s Px$? $\mathcal{M} \models_{s[x:=\underline{\Rightarrow}D]} Px$? $\mathcal{M} \models_s Ryx$? $\mathcal{M} \models_s Ryx \rightarrow Px$?
- $\mathcal{M} \models_s \exists yRyx \rightarrow Px$? $\mathcal{M} \models_s \forall x(\exists yRyx \rightarrow Px)$?

这是基于公式 φ 的构造的递归定义,它告诉我们如何一步步地确定一个公式是否成立

例

- $\mathcal{M} \models_s Px$? $\mathcal{M} \models_{s[x:=\underline{\Rightarrow}D]} Px$? $\mathcal{M} \models_s Ryx$? $\mathcal{M} \models_s Ryx \rightarrow Px$?
- $M \models_s \exists yRyx \to Px? M \models_s \forall x(\exists yRyx \to Px)?$

塔斯基真定义中对诸如合取式、析取式、蕴含式是否成立的定义 似乎依赖于我们对并且、或、蕴含的直观理解。我们可以理解为

定义告诉我们如何基于下述真值表判断组合公式是否可满足

$\mathcal{M} \models_s \varphi$	$\mathcal{M} \models_s \psi$	$\mathcal{M} \models_s \varphi \rightarrow \psi$
Yes	Yes	Yes
Yes	No	No
No	Yes	Yes
No	No	Yes

塔斯基真定义中对诸如合取式、析取式、蕴含式是否成立的定义 似乎依赖于我们对并且、或、蕴含的直观理解。我们可以理解为 定义告诉我们如何基于下述真值表判断组合公式是否可满足

$\mathcal{M} \models_s \varphi$	$\mathcal{M} \models_s \psi$	$\mathcal{M} \models_s \varphi \rightarrow \psi$
Yes	Yes	Yes
Yes	No	No
No	Yes	Yes
No	No	Yes

- 请观察: 根据塔斯基真定义,如果变元赋值 s_1, s_2 关于公式 φ 中出现的变元赋值相同,那么 $M \models_{s_1} \varphi$ 当且仅当 $M \models_{s_2} \varphi$
- 虽然一个变元赋值 s 可以涉及对无穷个变元的赋值, 实际考虑一个或有穷个公式的时候我们只会用到 s 对 出现的有穷个变元的赋值
- 上面的条件可以进一步放松为,"如果 s_1, s_2 关于公式 φ 中出现的自由变元赋值相同"

- 请观察: 根据塔斯基真定义,如果变元赋值 s_1, s_2 关于公式 φ 中出现的变元赋值相同,那么 $M \models_{s_1} \varphi$ 当且仅当 $M \models_{s_2} \varphi$
- 虽然一个变元赋值 s 可以涉及对无穷个变元的赋值, 实际考虑一个或有穷个公式的时候我们只会用到 s 对 出现的有穷个变元的赋值
- 上面的条件可以进一步放松为,"如果 s_1, s_2 关于公式 φ 中出现的自由变元赋值相同"

- 请观察: 根据塔斯基真定义,如果变元赋值 s_1, s_2 关于公式 φ 中出现的变元赋值相同,那么 $M \models_{s_1} \varphi$ 当且仅当 $M \models_{s_2} \varphi$
- 虽然一个变元赋值 s 可以涉及对无穷个变元的赋值, 实际考虑一个或有穷个公式的时候我们只会用到 s 对 出现的有穷个变元的赋值
- 上面的条件可以进一步放松为,"如果 s_1, s_2 关于公式 φ 中出现的自由变元赋值相同"

因此,如果 φ 是语句,那么或者对所有的变元赋值 s 有 $M = s \varphi$,或者对所有的变元赋值 $M \neq s \varphi$

定义

假设 φ 是语句。如果对所有的变元赋值 s 有 $\mathcal{M} \models_s \varphi$,我们 称 φ 在 \mathcal{M} 中 真 ,记作 $\mathcal{M} \models \varphi$ 。

继续观察: $\forall x(\exists yRyx \rightarrow Px)$ 是否成立是如何递归地依赖于 其子公式 $\exists yRyx \rightarrow Px$ 是否成立的?

- 为了检验 ∀x(∃yRyx → Px) 是否成立,我们要对每一个
 d ∈ D = { 张三、李四、王五 } 检验是否都有
 M ⊧_{s:=d} ∃yRyx → Px
- 当 D 是有穷集合时,这是能行的。当 D 无穷时则未必

继续观察: $\forall x(\exists yRyx \rightarrow Px)$ 是否成立是如何递归地依赖于 其子公式 $\exists yRyx \rightarrow Px$ 是否成立的?

- ▶ 为了检验 ∀x(∃yRyx → Px) 是否成立,我们要对每一个
 d ∈ D = { 张三、李四、王五 } 检验是否都有
 M ⊧_{s:=d} ∃yRyx → Px
- 当 D 是有穷集合时,这是能行的。当 D 无穷时则未必

定义 (有效性)

给定谓词逻辑语言 ₤

我们称一个 £ 公式 φ 是 逻辑有效的 或 有效
 (valid, 记作 ⊧ φ), 当且仅当对任意 £ 的模型 M,
 任意 M 上的变元赋值 s 有 M ⊧ s φ。

定义 (有效性)

给定谓词逻辑语言 ₤

■ 假设 Σ 是一个 \mathcal{L} 公式的集合, φ 是一个 \mathcal{L} 公式,我们称 Σ 逻辑蕴含 (logcially implies) φ (记作 $\Sigma \models \varphi$),当 且仅当对任意 \mathcal{L} 的模型 M,任意 M 上的变元赋值 s,如果对每个 Σ 中的公式 ψ 都有 $M \models_s \psi$,那么 $M \models_s \varphi$ 。

- Σ ⊧ φ 即从 Σ 到 φ 的推理是有效的。反过来,如果
 Σ ⊭ φ,则存在一个模型 M 和赋值 s,满足 Σ 中的每
 个公式却不满足 φ
- 注意: 我们在 $M \models_s \varphi$ 和 $\Sigma \models \varphi$ 中都使用了符号 \models 。这是个不幸的选择,请注意区分。
- □ ⊨ φ 即 ∅ ⊨ φ

- Σ ⊧ φ 即从 Σ 到 φ 的推理是有效的。反过来,如果
 Σ ⊭ φ,则存在一个模型 M 和赋值 s,满足 Σ 中的每
 个公式却不满足 φ
- 注意: 我们在 $M_{\mathsf{F}_s}\varphi$ 和 $\Sigma_{\mathsf{F}}\varphi$ 中都使用了符号 F_s 。这是个不幸的选择,请注意区分。

- Σ = φ 即从 Σ 到 φ 的推理是有效的。反过来,如果
 Σ ≠ φ , 则存在一个模型 M 和赋值 s , 满足 Σ 中的每
 个公式却不满足 φ
- 注意: 我们在 $M_{\mathsf{F}_s}\varphi$ 和 $\Sigma_{\mathsf{F}}\varphi$ 中都使用了符号 F_s 。这是个不幸的选择,请注意区分。
- $\models \varphi$ 即 $\emptyset \models \varphi$

下列是否成立?

- $\blacksquare \models \exists x P x \lor \neg \exists x P x$
- $\blacksquare \models \exists x P x \lor \forall x \neg P x$
- $\exists x \exists x \exists y Rxy \rightarrow \exists x Rxx$
- $\blacksquare \models \forall x \forall y Rxy \rightarrow \forall x Rxx$

下列是否成立?

- $\blacksquare \models \exists x \exists y Rxy \rightarrow \exists x \exists y Ryx$
- $\blacksquare \models \forall xRxx \rightarrow \forall x\exists yRxy$
- $\blacksquare \models \forall xRxy \rightarrow \forall x\exists yRxy$
- $\blacksquare \models \forall x \exists y Rxy \rightarrow \forall x Rxy$

证明,对任意公式 φ,ψ 有

$$\varphi \models \psi$$
 , 当且仅当 $\models \varphi \rightarrow \psi$

只涉及有穷条公式时,我们常用 $\varphi_1, \ldots, \varphi_n \models \psi$ 作为 $\{\varphi_1, \ldots, \varphi_n\} \models \psi$ 的简写

下列是否成立?

- $\forall xPx \models \exists xPx$
- $\blacksquare \ \forall x \forall y (Rxy \rightarrow Ryx), Rab \models Rba$
- $\forall x \forall y (Rxy \rightarrow Ryx), Rab \models Raa$
- $\forall x \forall y \forall z (Rxy \rightarrow Ryz \rightarrow Rxz), Rab, \neg Rac \models \neg Rbc$