可计算性理论

杨睿之

复旦大学哲学学院

2024 年春季

前情回顾

- 存在不可比的 Δ_2^0 度
- 存在低效的单集
 - 有穷损害优先方法

定理

存在超低效 (superlow) 的单集

证明.

存在低效单集证明中构造的 A 满足 A' 是 ω -c.e. 的,其中每个 L_e 被损害的次数是可计算的。

推论

对每个图灵度 $\mathbf{c} \in \mathcal{D}_T$ 存在图灵度 $\mathbf{a} \in \mathcal{D}_T$ 有 $\mathbf{a} >_T \mathbf{c}$ 且 $\mathbf{a}' =_T \mathbf{c}'$

证明.

相对化低效单集存在定理。对每个集合 C 构造集合 A_0 在 C 中 c.e., $\mathbb{N} \setminus A_0$ 无穷, A_0 与每个 C 中 c.e. 的无穷集合相 交 (因而 $A_0 \nleq_T C$), 并且 $(A_0 \oplus C)' \leq_T C'$ 。取 $A = A_0 \oplus C$ 。

定理 (Friedberg-Muchnik)

存在不可比的 c.e. 集对 $A|_T B$

证明.

有穷损害优先方法

定理 (Sacks Splitting Theorem)

任给 c.e. 集 B 和不可计算的 c.e. 集 C,可以能行地得到低效的 c.e. 集 A_0 和 A_1 ,使得 $B = A_0 \cup A_1$, $A_0 \cap A_1 = \emptyset$,且 $C \not\leq_T A_i$ (i = 0, 1)

注意: 此时 $B \equiv_T A_0 \oplus A_1$

推论

- 对任意不可计算的 c.e. 集 B, 存在 c.e. 集 A_0 、 A_1 有 $B \equiv_T A_0 \oplus A_1 \coprod A_0 \bot_T A_1$ 。因此,
 - 可以从低效 c.e. 度通过联生成所有 c.e. 度
 - 存在 c.e. 集的 <_T 无穷下降链

下期预告

- 康托尔空间
- Kolmogorov 复杂度